Inequalities for Derivatives of Polynomials of Special Type*

John T. Scheick
Department of Mathematics, Ohio State University, Columbus, Ohio 43210
Communicated by G. G. Lorentz
Received March 28, 1970
\section*{DEDICATED TO PROFESSOR J. L. WALSH} ON THE OCCASION OF HIS 75TH BIRTHDAY

In this work some inequalities of G. G. Lorentz [I] are rendered in sharp form and prove to generalize a result of P. Erdös [2]. The improved version seems to be a new formulation for inequalities of this type.

Before stating the inequalities, let us introduce some terminology: P_{n} will denote the class of polynomials of degree less than or equal to n, while Π_{n} will denote the set of polynomials of the form $p=\sum_{0}{ }^{n} a_{k} q_{n k}$ with $a_{k} \geqslant 0$ $k=0,1, \ldots, n$, where $q_{n k}(x)=x^{k}(1-x)^{n-k}$. Elements of Π_{n} are called polynomials with positive coefficients (in x and $1-x$) by Lorentz. All inequalities will be stated for the interval $[0,1]$. We put

$$
\|p\|_{\|}=\max \{|p(x)|: 0 \leqslant x \leqslant 1\} .
$$

The following theorem is due to Lorentz [1].

Theorem 1. For each $r=1,2, \ldots$ there exists a constant C_{r} for which

$$
\left\|p^{(r)}\right\| \leqslant C_{r} n^{r}\|p\| \quad \text { if } \quad p \in \Pi_{n}, \quad n=0,1, \ldots
$$

Erdös [2] demonstrated

Theorem 2. If $p \in P_{n}, n=0,1, \ldots$, and all zeros of p are real but lie outside $(0,1)$, then

$$
\left\|p^{\prime}\right\| \leqslant e n\|p\| .
$$

[^0]This is exact in the sense that $\left\|q_{n 1}^{\prime}\right\| / n\left\|q_{n 1}\right\| \rightarrow e$. By way of comparison, the inequalities of the brothers Markov for [0, 1] are (see, e.g., [3])

$$
\left\|p^{\prime}\right\| \leqslant 2 n^{2}\|p\| \quad \text { and } \quad\left\|p^{\prime \prime}\right\| \leqslant \frac{4}{3} n^{2}\left(n^{2}-1\right)\|p\|
$$

if $p \in P_{n}, n=0,1, \ldots$.
Thus much is gained by imposing the restrictions of Theorem 1 or 2 . In this paper we will prove

Theorem 3. Let $t_{1}(x)=\frac{1}{2}$ and $t_{n}(x)=x+(1-2 x) / n$ for $n \geqslant 2$. Then, for $p \in \Pi_{n}, n=1,2, \ldots$, and $0 \leqslant x \leqslant \frac{1}{2}$ one has

$$
\begin{align*}
&-2 p(x) \leqslant p^{\prime}(x) \leqslant e n p\left(t_{n}(x)\right) \tag{1}\\
&-2 e n(n-1) p\left(t_{n}(x)\right) \leqslant p^{\prime}(x) \leqslant 2 e n(n-1) p\left(t_{n}(x)\right) \tag{2}
\end{align*}
$$

The novetly of this theorem lies in the fact $t_{n}(x)$ is independent of p. Note that $x \leqslant t_{n}(x) \leqslant \frac{1}{2}$ if $x \in\left[0, \frac{1}{2}\right]$. A theorem of this type (with nonconstant t_{n}) is impossible for P_{n}. Similar theorems for Π_{n} and higher derivatives or for other classes of polynomials remain open for investigation.

We state as corollaries the improved versions of Theorems 1 and 2.

Corollary 1. If $p \in \Pi_{n}$ and $n \geqslant 1$, then

$$
\left\|p^{\prime}\right\| \leqslant e n\|p\| \quad \text { and } \quad\left\|p^{\prime \prime}\right\| \leqslant 2 e n(n-1)\|p\|
$$

Further, $\left\|q_{n 1}^{\prime}\right\| / n\left\|q_{n 1}\right\|,\left\|q_{n 1}^{\prime \prime}\right\| / 2 n(n-1)\left\|q_{n 1}\right\| \rightarrow e \quad(n \rightarrow \infty)$.
Proof. If $p \in \Pi_{n}$, then so does $p(1-x)$, and the first two statements follow from Theorem 3. The last statement is a routine calculation.

Corollary 2. If $p \in P_{n}(n \geqslant 1)$ is a real polynomial whose zeros lie outside the open disk with center and radius $\frac{1}{2}$, then

$$
\left\|p^{\prime}\right\| \leqslant e n\|p\| \quad \text { and } \quad\left\|p^{\prime \prime}\right\| \leqslant 2 e n(b-1)\|p\|
$$

Proof. This follows from Corollary 1 and the following observation of Lorentz: For such p one has either p or $-p \in \Pi_{n}$. To see this we note that $p \in \Pi_{n}$ and $q \in \Pi_{m}$ imply $p q \in \Pi_{n+m}$. Now we factor p and use the identities: $x-r=(1-r) x-r(1-x)$ and

$$
(x-r)(x-\bar{r})=|r|^{2}(1-x)^{2}+2\left(\left|r-\frac{1}{2}\right|^{2}-\frac{1}{4}\right) x(1-x)+|1-r|^{2} x^{2}
$$

The Proof of (1). It is sufficient to prove (1) with p replaced by the $q_{n k}$ because (1) may be recovered by multiplying by $a_{k} \geqslant 0$ and adding. We
have $q_{n k}^{\prime}(x)=(k-n x) x^{k-1}(1-x)^{n-k-1} k=0,1, \ldots n, n \geqslant 1$. (1) is trivial for $n=1,2$ and we omit the proof. To prove the right inequality, we consider

$$
r_{n k}=\frac{q_{n k}^{\prime}(x)}{n q_{n k}(t)}=\frac{k / n-x}{t(1-t)}\left(\frac{x}{t}\right)^{k-1}\left(\frac{1-x}{1-t}\right)^{n-k-1}, \quad k=0,1, \ldots, n
$$

where $t=x+a / n, a=1-2 x$. We must prove $r_{n k} \leqslant e$ when $0 \leqslant x \leqslant \frac{1}{2}$, $0 \leqslant k \leqslant n, n \geqslant 3$. The proof hinges on the inequality $1+u \leqslant e^{u}, u$ real, which yields

$$
x / t \leqslant \exp (-a / n t) \quad \text { and } \quad(1-x) /(1-t) \leqslant \exp (a / n(1-t))
$$

Since $r_{n 0} \leqslant 0$, we pass to $k \geqslant 1$, to find

$$
r_{n n}=1 / t(x / t)^{n-1} \leqslant 1 / t \exp (-[(n-1) / n][a / t])=f_{n}(x)
$$

while for $1 \leqslant k \leqslant n-1$ and $0 \leqslant x \leqslant k / n, r_{n k} \leqslant w \exp (-a w+T+S)=$ U_{k} where $w=(k / n-x) / t(1-t), T=a(a+1) / n t, S=a(a-1) / n(1-t)$. Now $f_{n}(x)$ increases with x, and attains the value 2 at $\frac{1}{2}$. Hence $r_{n n} \leqslant 2$. Fixing x and regarding k as a continuous variable, we find that U_{k} increases until $k=k(x)=n x+n t(1-t) / a$ and decreases thereafter. But $k(x)$ increases with x and $k(1 / 3) \geqslant n$, so that if $1 / 3 \leqslant x \leqslant \frac{1}{2}, U_{k} \leqslant U_{n} \leqslant f_{n}(x) \leqslant 2$. When $0 \leqslant x \leqslant 1 / 3, U_{k} \leqslant U_{k(x)}=a^{-1} \exp (-1+T+S)$. An easy calculation shows $U_{k i(x)}$ is logarithmically convex in x, whence $U_{k(x)} \leqslant \max \left(U_{k(0)}\right.$, $\left.U_{k(1 / 3)}\right)$. But $U_{k(0)}=e \geqslant U_{k(1 / 3)}$, completing the proof of the right inequality. For the left inequality, $q_{n k}^{\prime}(x) / n q_{n k}(x)=k /(n-x) / x(1-x) \geqslant-1 /(1-x) \geqslant-2$ if $0 \leqslant x \leqslant \frac{1}{2}$, suffices.

The Proof of (2). As before, it is sufficient to prove (2) with p replaced by $q_{n k}$. For $0 \leqslant k \leqslant n, n \geqslant 2, q_{n k}^{\prime \prime}(x)=n(n-1) T_{n k}(x) x^{k-2}(1-x)^{n-k-2}$, where

$$
T_{n k}(x)=x^{2}-\frac{2 k}{n} x+\frac{k(k-1)}{n(n-1)}=\left(x-\frac{k}{n}\right)^{2}-\frac{k(n-k)}{n^{2}(n-1)} .
$$

We shall prove

$$
\begin{equation*}
-2 e \leqslant r_{n k} \leqslant 2 e \text { if } 0 \leqslant x \leqslant \frac{1}{2}, 0 \leqslant k \leqslant n, n \geqslant 2 \tag{4}
\end{equation*}
$$

where

$$
r_{n k}=\frac{q_{n k}^{\prime \prime}(x)}{n(n-1) q_{n k}(t)}=\frac{T_{n k}(x)}{t^{2}(1-t)^{2}}\left(\frac{x}{t}\right)^{k-2}\left(\frac{1-x}{1-t}\right)^{n-k-2},
$$

$t=x+a / n, a=1-2 x$. First we consider some extreme cases. If $n=2$,
$t=\frac{1}{2}$ identically and (4) is trivial. When $n=3$, a direct calculation shows $\left|r_{n k}\right| \leqslant 9 / 2$ for $k=0,1,2,3$ and $0 \leqslant x \leqslant \frac{1}{2}$. By (3),

$$
0 \leqslant r_{n n} \leqslant t^{-2} \exp (2-1 / t)=g(t)
$$

and

$$
0 \leqslant r_{n 0} \leqslant(1-t)^{-2} \exp (2-1 /(1-t))=g(1-t)
$$

But $g(t) \leqslant g\left(\frac{1}{2}\right)=4$, disposing of $k=0, n$. Some consideration shows $r_{n 1}$ increases with x in $\left[0, \frac{1}{2}\right]$ so that

$$
-2 e<-2(n /(n-1))^{n-1} \leqslant r_{n 1} \leqslant 8((n-2) / 2 n)<4
$$

Writing $r_{n, n-1}=(1-x-2 / n) /(1-t)\left(x^{n-3} / t^{n-1}\right)$ we observe that the first quotient decreases in $\left[0, \frac{1}{2}\right]$ while the second maximizes at $x=(n-3) / 2(n-2)$, so $0 \leqslant r_{n, n-1} \leqslant 4[n /(n-1)]^{n-1}[(n-3) /(n-2)]^{n-2}\left[(n-2)^{2} /(n-1)(n-3)\right] \leqslant 4$ ($n \geqslant 4$).

Now we shall concern ourselves with the right side of (4). First we confine our attentions to $0 \leqslant x \leqslant b_{n}=1 / 2(n-2)$. In this interval $r_{n 2}$ decreases while for $3 \leqslant k \leqslant n-1$ the factor x^{k-2} / t^{k} of $r_{n k}$ increases and the other factor decreaxes. Thus

$$
r_{n 2} \leqslant 2[n /(n-1)]^{n-1} \leqslant 2 e
$$

and

$$
r_{n k} \leqslant[k(k-1) / n(n-1)][n /(n-1)]^{n-k}\left(b_{n}\right)^{k-2}(2 n / 3)^{k}=A_{k}
$$

Since $A_{k+1} \leqslant A_{k}$ for $k \geqslant 3$,

$$
A_{k} \leqslant A_{3}=(8 / 9)[(n-1) /(n-2)][n /(n-1)]^{n-1} \leqslant \frac{3}{2} e
$$

Now our interest turns to the interval $b_{n} \leqslant x \leqslant \frac{1}{2}$. Simplifying $T_{n k}$ and using (3) we find $r_{n k} \leqslant w^{2} \exp (-a w+T+S)=U_{k}$, where

$$
w=(k-n x) / t(1-t), \quad T=a(a+2) / n t, \quad S=a(a-2) / n(1-t)
$$

With fixed x, U_{k} decreases in $0 \leqslant k \leqslant n x$, increases in $n x \leqslant k \leqslant k(x)$, and decreases for $k \geqslant k(x)$, where $k(x)=n x+2 n t(1-t) / a$. Since $k(x)$ increases with x and $k\left(\frac{1}{4}\right)>n$, we have $U_{k} \leqslant \max \left(U_{0}, U_{n}\right)$ if $\frac{1}{4} \leqslant x \leqslant \frac{1}{2}$, and $U_{k} \leqslant \max \left(U_{0}, U_{k(x)}, U_{n}\right)$ if $b_{n} \leqslant x \leqslant \frac{1}{4}$. By (3), $U_{0} \leqslant g(1-t) \leqslant 4$ and $U_{n} \leqslant g(t) \leqslant 4$. Since $b_{4}=\frac{1}{4}$ we may take $n \geqslant 5$ when bounding $U_{k(x)}$ in $b_{n} \leqslant x \leqslant \frac{1}{4}$. But $U_{k(x)}$ is logarithmically convex, which implies

$$
U_{k(x)} \leqslant \max \left(U_{k\left(b_{n}\right)}, U_{k(1 / 4)}\right)
$$

The latter quantity does not exceed 4 , we have $r_{n k} \leqslant 4$ if $b_{n} \leqslant x \leqslant \frac{1}{2}$, $2 \leqslant k \leqslant n-2$, The proof of the right part of (4) is complete.

Let us turn now to the left inequality in (4). Only $2 \leqslant k \leqslant n-2$ remain. For $k=2,-r_{n 2} \leqslant 2(n-2)(1-x)^{n-4} / n^{2}(n-1) t^{2}(1-t)^{n-2}$. The function of x on the right decreases, so $-r_{n 2} \leqslant 2[(n-2) / n][n /(n-1)]^{n-1} \leqslant 2 e$. For $3 \leqslant k \leqslant n-2$ we use

$$
-r_{n k} \leqslant R_{n k}=\frac{n-3}{n-1} \frac{k}{n^{2}} \frac{1}{t^{2}(1-t)^{2}}\left(\frac{x}{t}\right)^{k-2}\left(\frac{1-x}{1-t}\right)^{n-k-2}
$$

In $0 \leqslant x \leqslant b_{n}, R_{n k}$ increases since each quotient does, whence $R_{n k} \leqslant R_{n k}\left(b_{n}\right)=B_{k}$. For each $n \geqslant 5, B_{k}$ decreases in $k \geqslant 3$, so $B_{k} \leqslant B_{3}$. But $B_{3} \leqslant(4 / 9)[n /(n-2)]^{n-2}<4$. When $b_{n} \leqslant x \leqslant \frac{1}{2}$ we apply (3) to obtain

$$
R_{n k} \leqslant V_{k}=\frac{n-3}{n(n-1) t(1-t)} z \exp (-a z+T+S)
$$

where $z=k / n t(1-t), T=2 a / n t, S=(n-2) a / n(1-t)$. As a function of k, V_{k} increases until $k=k(x)=n t(1-t) / a$ and decreases thereafter. $k(x)$ increases with x and $k(2 / 5) \geqslant n$, so for $\frac{2}{5} \leqslant x \leqslant \frac{1}{2}$ we have $V_{k} \leqslant V_{n}$. But V_{n} increases with x, taking a maximum at $\frac{1}{2}$ which is less than 4 . When $b_{n} \leqslant x \leqslant \frac{2}{5}, V_{k} \leqslant V_{k(x)}$ and an application of (3) yields

$$
V_{k(x)} \leqslant[(n-3) /(n-1)](n a t)^{-1} \exp (2 a / n t)=h(x) .
$$

$h(x)$ is logarithmically convex in $0 \leqslant x \leqslant \frac{1}{2}$, so that $h(x) \leqslant \max \left(h\left(b_{n}\right)\right.$, $h(2 / 5)) \leqslant 4$ if $n \geqslant 5$ and $b_{n} \leqslant x \leqslant \frac{2}{5}$. All is done.

References

1. G. G. Lorentz, Degree of approximation by polynomials with positive coefficients, Math. Ann. 151 (1963), 239-251.
2. P. Erdös, Extremal properties of polynomials, Ann. of Math. 4 (1940), 310-313.
3. R. J. Duffin and A. C. Schaeffer, A refinement of an inequality of the brothers Markoff, Trans. Amer. Math. Soc. 50 (1941), 517-528.

[^0]: * This work is part of a thesis directed by Professor G. G. Lorentz at Syracuse University. It was supported in part by the U.S. Air Force under contract AF 49(638)-1401.

