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In this work some inequalities of G. G. Lorentz [1] are rendered in sharp
form and prove to generalize a result ofP. Erdos [2]. The improved version
seems to be a new formulation for inequalities of this type.

Before stating the inequalities, let us introduce some terminology: Pn will
denote the class of polynomials of degree less than or equal to n, while IIn

will denote the set of polynomials of the form p = Lon akqnk with a" ?: °
k = 0, 1,... , n, where qnk(X) = x"(l - X)"-k. Elements of IIn are called
polynomials with positive coefficients (in x and 1 - x) by Lorentz. All in
equalities will be stated for the interval [0, 1]. We put

I[p!: = max{[p(x)[: °~ x ~ I}.

The following theorem is due to Lorentz [l].

THEOREM 1. For each r = 1,2,... there exists a constant Grlor which

if pEIIn , n = 0, 1, ....

Erdos [2] demonstrated

THEOREM 2. If PEP", , n = 0, 1, ... , and all zeros 01 p are real but lie
outside (0, 1), then

II p' II :(; en II p II .

* This work is part ofa thesis directed by Professor G. G. Lorentz at Syracuse University.
It was supported in part by the U.S. Air Force under contract AF 49(638)-1401.
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This is exact in the sense that II q~l Illn II qnlll- e. By way of comparison,
the inequalities of the brothers Markov for [0, I] are (see, e.g., [3])

II p' II ~ 2n2 11 p II and II p" II ~ !n2(n2
- 1)11 p II

ifpEPn,n = 0, I, ....
Thus much is gained by imposing the restrictions of Theorem 1 or 2. In this
paper we will prove

THEOREM 3. Let tl(x) = t and tn(x) = x + (I - 2x)lnfor n ?: 2. Then,
for p EIIn , n = 1,2,... , and °~ x ~ t one has

-2p(x) ~ p'(x) ~ enp(tn(x» (I)

-2en(n - I)p(tn(x» ~ p"(x) ~ 2en(n - l)p(tnCx»). (2)

The novetly of this theorem lies in the fact tn(x) is independent of p. Note
that x ~ tn(x) ~ t if x E [0, H A theorem of this type (with nonconstant tn)
is impossible for Pn • Similar theorems for IIn and higher derivatives or for
other classes of polynomials remain open for investigation.

We state as corollaries the improved versions ofTheorems I and 2.

COROLLARY 1. IfP E IIn and n ?: 1, then

lip' II ~ en lip II and II p" II ~ 2en(n - 1)11 p II .

Further, II q~lliin II qnlli , II q~111/2n(n - 1)11 qnlll- e (n -+ (0).

Proof. If p E IIn , then so does p(l - x), and the first two statements
follow from Theorem 3. The last statement is a routine calculation.

COROLLARY 2. IfpEPn(n ?: I) is a real polynomial whose zeros lie outside
the open disk with center and radius t, then

lip' II ~ en lip II and II p" II ~ 2en(b - 1)11 p [I .

Proof. This follows from Corollary I and the following observation of
Lorentz: For such p one has either p or -p E IIn . To see this we note that
p E IIn and q E IIm imply pq E IIn+m . Now we factor p and use the identities:
x - r = (1 - r) x - r(l - x) and

(x - r)(x - f) = I r 12(1 - X)2 + 2(1 r - t 12 -!) x(1 - x) + I 1 - r 12 x2.

The Proof of (I). It is sufficient to prove (1) with p replaced by the qnk
because (I) may be recovered by multiplying by ak ?: °and adding. We
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have q~ix) = (k - Ilx) x"-1(1 - X)II- ..-1 k = 0, 1,... 11, 11 ~ 1. (1) is trivial
for 11 = 1,2 and we omit the proof. To prove the right inequality, we con
sider

_ q~,ix) _ kin - x (' X)"-1 (' 1 - X)"-"-1rk---- ---
n' nqn,J/) 1(1 - I) I 1 - I , ' k = 0, 1,... ,11,

where I = x + a/n, a = 1 - 2x. We must prove r nk < e when °~ x ~ t,°~ k ~ n, n ~ 3. The proof hinges on the inequality I + u ~ eU
, ureal,

which yields

X/I ~ exp( -a/nl) and (1 - x)/(l - t) ~ exp(a/n(1 - t».

Since r nO ~ 0, we pass to k ~ 1, to find

r nn = l/t(X/I)n-l ~ 1/1 exp(-[en - 1)/nHa/ID = fn(x),

while for I ~ k ~ n - 1 and °~ x ~ kin, rnk < w exp( -aw + T + S) =
Uk where w = (k/n - x)/t(1 - t), T = a(a + 1)/nl, S = a(a - 1)/n(1 - I).
Now fn(x) increases with x, and attains the value 2 at t. Hence rnn ~ 2.
Fixing x and regarding k as a continuous variable, we find that Uk increases
until k = k(x) = nx + nt(l - I)/a and decreases thereafter. But k(x)
increases with x and k(1/3) ~ n, so that if 1/3 ~ x ~ t, Uk ~ Un ~fn(x) ~ 2.
When °~ x < 1/3, Uk ~ Uk(x) = a-I exp(-I + T + S). An easy calcula
tion shows Uk(x) is logarithmically convex in x, whence Uk(x) < max(Uk(o) ,
Uk (1I3»' But Uk(o) = e ~ Uk (1I3), completing the proof of the right inequality.
For the left inequality, q~k(X)/nqnk(X) = k/(n - x)/x(l - x) ~ -1/(1 - x) ~ -2
if°~ x ~ t, suffices.

The Proofof (2). As before, it is sufficient to prove (2) with p replaced by
qnk' For °< k ~ n, n ~ 2, q;,..{x) = n(n - 1) Tnk(x) x k- 2(l - x)n-k-2,
where

_ 2 2k k(k - I) _ ( k)2 ken - k)
Tnk(x) - x - n x + n(n _ I) - x - n, - n2(n - 1) .

We shall prove

-2e ~ rnk ~ 2e if°~ x ~ t, °~ k ~ n, n ~ 2, (4)

where

I = x + a/n, a = I - 2x. First we consider some extreme cases. If n = 2,
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t = t identically and (4) is trivial. When n = 3, a direct calculation shows
I 'nl.: I ~ 9/2 for k = 0, 1,2,3 and °~ x ,~ t. By (3),

°~ 'nn ~ (-2 exp(2 - l/t) = get)

and

o ~ 'no ~ (1 - t)-2 exp(2 - 1/(1 - t» = g(l - t).

But get) ~ get) = 4, disposing of k = 0, n. Some consideration shows,nl
increases with x in [0, t] so that

-2e < -2(n/(n - 1»n-l ~ 'nl ~ 8«n - 2)/2n) < 4.

Writing 'n,n-l = (l - x - 2/n)/(1 - t) (xn- 3/t n- l) we observe that the first
quotient decreases in [0, t] while the second maximizes at x=(n - 3)/2(n - 2),
so 0 ~ 'n,n-l ~ 4[n/(n - 1)]n-l [(11 - 3)/(n - 2)]n-2 [en - 2)2/(11 - 1)(n - 3)] ~ 4
(n ;;;:, 4).

Now we shall concern ourselves with the right side of (4). First we confine
our attentions to 0 ~ x ~ bn = 1/2(n - 2). In this interval,n2 decreases
while for 3 ~ k ~ n - 1 the factor XI.:-2/t k of 'nk increases and the other
factor decreaxes. Thus

rn2 ~ 2[11/(11 - 1)]n-l ~ 2e,

and

'nl.: ~ [k(k - 1)/11(11 - 1)][11/(n - ])]n-I.: (bn)I.:-2 (211/3)k = AI.:'

AI.: ~ A 3 = (8/9)[(n - 1)/(11 - 2)][n/(11 - 1)]n-l ~ te.

Now our interest turns to the interval bn ~ x ~ t. Simplifying Tnk and
using (3) we find,nk ~ w2 exp(-aw + T + S) = Uk, where

w = (k - I1X)/t(1 - t), T = a(a + 2)/l1t, S = a(a - 2)/11(1 - t).

With fixed x, Uk decreases in 0 ~ k ~ nx, increases in nx ~ k ~ k(x), and
decreases for k ;;;:, k(x), where k(x) = nx + 2nt(1 - t)/a. Since k(x) in
creases with x and kef) > n, we have Uk ~ max(Uo , Un) if t ~ x ~ t, and
Uk ~ max(Uo , Uk(x) , Un) if bn ~ X ~ t. By (3), Uo ~ g(1 - t) ~ 4 and
Un ~ get) ~ 4. Since b4 = t we may take n ~ 5 when bounding Uk (x) in
bn ~ x ~ 1. But Uk(x) is logarithmically convex, which implies
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The latter quantity does not exceed 4, we have r nk :(; 4 if bn :(; x :(; ~,

2 :(; k :(; n - 2, The proof of the right part of (4) is complete.
Let us turn now to the left inequality in (4). Only 2 :(; k :(; n - 2 remain.

For k = 2, -rn2 :(; 2(n - 2)(1 - x)n-4/n2(n - 1) t2(l - t)n-2. The function
of x on the right decreases, so -rn2 :(; 2[(n - 2)/n][n/(n - l)]n-1 :(; 2e. For
3 :(; k :(; n - 2 we use

~ II - 3 k 1 (X )k-2 '1 - x )n-k-2
-rnk ~ Rnk = n=T n2 t2(l - t)2 t (T=t .

In 0 :(; x :(; b n , R nk increases since each quotient does, whence
R nk :(; Rnk(bn) = Bk • For each n ;;:, 5, Bk decreases in k ;;:, 3, so Bk ~ B3 •

But B3 :(; (4/9)[n/(n - 2)]n-2 < 4. When bn :(; x :(; t we apply (3) to obtain

n-3
R nk :(; Vk = ( I) (l ) Z exp(-QZ + T + S),nn- t -t

where Z = k/nt(1 - t), T = 2a/nt, S = (n - 2) a/n(1 - t). As a function
of k, Vk increases until k = k(x) = nt(1 - t)/a and decreases thereafter.
k(x) increases with x and k(2/5) ;;:, n, so for i :(; x :(; t we have Vk :(; Vn •

But Vn increases with x, taking a maximum at t which is less than 4. When
bn :(; x :(; i. V k :(; Vk(x) and an application of (3) yields

Vk(x) :(; [en - 3)/(n - 1)](nat)-l exp(2a/nt) = h(x).

hex) is logarithmically convex in 0 :(; x :(; t, so that hex) :(; max(h(bn ),

h(2/5» :(; 4 if n ;;:, 5 and bn :(; x :(; i. All is done.

REFERENCES

1. G. G. LORENTZ, Degree of approximation by polynomials with positive coefficients,
Math. Ann. 151 (1963), 239-251.

2. P. ERDos, Extremal properties of polynomials, Ann. of Math. 4 (1940), 310-313.
3. R. J. DUFFIN AND A. C. SCHAEFFER, A refinement of an inequality of the brothers

Markoff, Trans. Amer. Math. Soc. 50 (1941), 517-528.


